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 Designer drugs, or NPS 
 

 Designer Drug Research Unit (DDRU) 
 

 Neuron structure and function 
 

 Cannabinoid NPS (e.g., “Spice”) 
 

 Stimulant NPS (e.g., “Bath salts”) 
 

 Hallucinogen NPS (e.g., “NBOMes”) 
 

 Opioid NPS (e.g., acetyl fentanyl) 
 

 Summary 
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 Man-made psychoactive drugs created by 
chemists who hijack biomedical literature 
 

 Sold under false pretenses as harmless non-
drug products 
 

 Easy to obtain from the Internet, smoke 
shops, gas stations, street dealers 
 

 Used without detection, since urine toxicology 
tests do not usually identify these drugs 
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In the 2015 World Drug Report, the United 
Nations Office of Drugs and Crime 
(UNODC) noted that NPS continue to 
proliferate in the global drug 
marketplace, in terms of both quantity 
and diversity. By December 2014, a total 
of 541 different NPS had been reported 
by 95 countries and territories to the 
UNODC early warning system. 
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 Biomedical research has identified the mechanism 
of action for classic drugs of abuse (e.g., cocaine) 
 

 Online databases describe recipes for making 
novel drugs to target specific mechanisms 
 

 Marketing and sales of new synthetic drugs on 
websites allow anonymous purchases 
 

 “Trip reports” about drug use experiences are 
shared on Internet forums 
 Bluelight, Erowid, Lyceum, etc. 
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 Synthetic cannabinoids, e.g. “Spice” 
 Induce marijuana-like effects 
 

 Synthetic stimulants, e.g. “Bath salts” 
 Induce cocaine-like effects 
 

 Synthetic hallucinogens, e.g. “NBOMes”  
 Induce LSD-like effects 
 

 Synthetic opioids, e.g. Acetyl fentanyl 
 Induce morphine-like effects 
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The MISSION of the DDRU is to collect, analyze, and disseminate 
the most up-to-date information about NPS.       
  

The GOALS of the DDRU include:  
 1) SURVEILLANCE – to identify those NPS that pose risks  

 2) PRECLINICAL EVALUATION – to determine the molecular 

mechanisms and pharmacological actions of NPS in animal models  

 3) TOXICOLOGY ASSESSMENTS – to evaluate the toxic potential of NPS 

using predictive, in vitro, and in vivo methods 

 4) FORENSIC INVESTIGATION – to develop forensic assays, and examine 

PD/PK effects of NPS in animal models under controlled conditions 

 5) DATA DISSEMINATION – to make findings available to the scientific 

community and the public via presentations, publications and Internet. 
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SURVEILLANCE 
DEA, NFLIS, 

NDEWS, EMCDDA 

PRECLINICAL EVALUATION 
Michael Baumann, NIDA IRP 

TOXICOLOGY ASSESSMENT 
NIDA HQ 

FORENSIC INVESTIGATION 
Karl Scheidweiler, NIDA IRP 

DATA DISSEMINATION  
Presentations, Publications, Webinars 

Designer Drug Research Unit 
(DDRU)  
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 Poison Control Centers (AAPCC) 
 

 Drug Enforcement Administration (DEA)  
 Terrance Boos, PhD 

 National Forensic Laboratory Information System (NFLIS) 
 

 National Drug Early Warning System (NDEWS) 
 Eric Wish, PhD & Erin Artigiani, MS 
 

 European Monitoring Centre for Drugs & Drug 
Addiction (EMCDDA) 
 Simon Brandt, PhD 
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 Identification of specific problematic NPS 
 

 Synthesis of purified drugs and metabolites 
 Kenner Rice, PhD (NIDA IRP) 

 Simon Brandt, PhD (EMCDDA) 
 

 In vitro testing at receptors and transporters 
 John Partilla, BS & Donna Walther, MS (NIDA IRP) 
 

 In vivo testing in rodent models 
 Josh Elmore, BS & Hailey Walters, BS (NIDA IRP) 

 Chuck Schindler, PhD (NIDA IRP) 
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 AP triggers fusion of 
vesicular membrane 
with plasma membrane 
 

 Contents of vesicle are 
released into synaptic 
cleft (i.e., ECF) 
 

 Process is dependent 
upon intracellular Ca++ 
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At the synapse, 
electrical signaling 
(i.e., AP) is converted 
to chemical signaling 
as neurotransmitter 
molecules are 
released into the 
extracellular space 
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 Methods of use 
 Inhalation of smoke using bongs, pipes or joints  

 Vaping of liquid 
 

 Psychoactive effects 
 Positive mood and euphoria 

 Perceptual distortions similar to the effects of marijuana 

 Can be much more more potent than THC 
 

 Adverse effects 
 Increased heart rate, vomiting, kidney injury 

 Hallucinations, panic attacks, persistent psychosis 
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AC 
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 CB1 receptors are  
coupled to Gi 
 

 Receptor binding 
inhibits activity of 
adenylate cyclase (AC) 
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 JWH-018 decreases 
glutamate release 
and corresponding 
EPSPs 
 

 Effects are dose-
dependent and 
long-lasting 
 

 JWH-018 is at least 
5-times more 
potent than THC 
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 JWH-018 decreases 
body temperature 
(i.e., hypothermia) 
 

 Effects are dose-
dependent and 
long-lasting 
 

 JWH-018 is at least 
5-times more 
potent than THC 
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 JWH-018 causes a 
lifeless immobility 
(i.e., catalepsy) 
 

 Effects are dose-
dependent and 
long-lasting 
 

 JWH-018 is at least 
5-times more 
potent than THC 
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 Methods of use 
 Oral ingestion, snorting, intravenous injection 

 

 Psychoactive effects 
 Euphoria and increased energy similar to cocaine 

 Can be much more more potent than cocaine 
 

 Adverse consequences 
 Increased heart rate and blood pressure, hyperthermia 

 Agitation, delirium, psychosis, death 
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 DATs are channel-like 
proteins located in cell 
membranes 
 

 DAT is responsible for 
dopamine reuptake 
 

 Drugs that disrupt DAT 
will produce increases 
in dopamine in the 
extracellular fluid 
(ECF) 
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 MDPV increases 
extracellular 
concentrations of 
dopamine in reward 
circuits 
 

 Effects are dose-
dependent and rapid 
 

 MDPV is at least 10-
times more potent 
than cocaine 
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 MDPV markedly 
increases forward 
locomotion in rats 
 

 Motor effects 
correspond to 
elevations in 
dopamine 
 

 MDPV is at least 10-
times more potent 
than cocaine 
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 Rats learn quickly to 
self-administer 
MDPV 
 

 Acquisition of self-
administration 
behavioral indicates 
abuse liability 
 

 MDPV is at least 10-
times more potent 
than cocaine 
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Classic 
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 Methods of use 
 Oral ingestion 

 

 Psychoactive effects 
 Perceptual distortions similar to effects of LSD 

 25I-NBOMe is much more potent than LSD 
 

 Adverse consequences 
 Increased heart rate and blood pressure, hyperthermia 

 Agitation, delirium, death 
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PLC 
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 5-HT2A receptors are  
coupled to Gq 
 

 Receptor binding 
enhances activity of 
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 Methods of use 
 Intravenous injection via needle and syringe 

 Insufflation, oral, smoking (free base) 
 

 Psychoactive effects 
 Acute “rush”, euphoria and pain relief 

 Can be much more more potent than heroin 
 

 Adverse effects 
 Tolerance, dependence, addiction, blood-borne infection 

 Constipation, respiratory depression 
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AC 
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 m receptors are  
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 E.g.,  Translational research with 5-HT medications 
 Role of SERT in IPAH (Rothman et al., 1999) 

 Role of 5-HT2B receptors in CVD (Rothman and Baumann, 2009) 
 

 Translational research with NPS 
 

4/27/2016 IRP, NIDA, NIH 

Bedside Bench Bedside 

Reports of drug 
effects in humans; 
ER data; DEA data 

Assessment of drug 
mechanism in vitro 
and in vivo 

DDRU, IRP, NIDA 

Strategies for 
prevention and 
treatment 

43 



 Scheduling decisions by DEA and DHHS 
 Emergency Scheduling 

 Final Scheduling 
 

 US legislation such as H.R. 3537 
 Draft bill to render specific NPS illegal 
 

 European Drug Monitoring Center 
 EMCDDA Annual Reports 

 EMCDDA-Europol Joint Report on a-PVP  

 Risk Assessment Report for MDPV 

 Risk Assessment Report for 4,4’-DMAR 
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 NPS can produce life-threatening adverse 
medical consequences 
 

 Biological effects of NPS resemble those of 
the drugs they intend to mimic, but NPS are 
often much more potent 
 

 Users can not be sure of the precise chemical 
constituents of products 
 

 NPS can contain toxic impurities, byproducts 
or adulterants 
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 NIDA IRP  
 Chuck Schindler, PhD [behavior & telemetry] 

 Eugene Kiyatkin, MD [in vivo physiology] 

 Carl Lupica, PhD and Alex Hoffman, PhD [electrophysiology] 

 Marilyn Huestis, PhD [PD/PK studies] 

 Research Triangle Institute 
 Julie Marusich, PhD [behavior] 

 Virginia Commonwealth University 
 Steve Negus, PhD [intracranial  self-stimulation] 

 Medical University of Vienna 
 Harald Sitte, PhD [in vitro assays] 
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